
CPS331 Lecture: Search in Games  last revised September 17, 2018  
 
Objectives:  

1. To introduce mini-max search
2. To introduce the use of static evaluation functions
3. To introduce alpha-beta pruning
 
Materials:  

1. Slide show of Tic-Tac-Toe game tree (ply 6), showing development of min-max  
values

2. Projectable of Alpha beta algorithm
3. Slide show of alpha-beta example
4. Game tree with alpha-beta exercise to do in class

I. Introduction

A.In the search methods we have discussed so far, we have assumed that 
we are in total control of the decision points along the way.  This is not 
necessarily the case if we are working in an adversary environment.  
The classic illustration of this is two-player games, in which every 
other move is totally out of our control.

B. Two player games constitute an interesting and important class of 
search problems.

1. The ability to play games such as chess is often regarded as a mark 
of high intelligence, and efforts to produce programs that could do 
so began early in the history of AI.

2. Game playing is a search problem, in the sense that whenever it is 
the computer's turn to move, it must choose the best move from a 
set  of legal moves for the current board position.  Typically, this is 
done by exploring the consequences of each move through several 
moves into the future - e.g. “if I do this, then my opponent can 
do ..., to which I respond by doing ...”.
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3. That, is, at any given time, the computer is confronted by a tree of 
possible moves - its choices, possible opponents responses to each, 
possible countermoves by the computer ...  
 
PROJECT: Tic-tac-toe example - just first slide.  Note terminology 
"6th ply"

C. In addition to raising the problem of our controlling only half the 
moves, games present a second problem: for any interesting game, the 
search tree is much too large to be exhaustively searched.  
 
Ex: Even an uninteresting game like tic-tac-toe has a search tree with 
about 9! = 362,880 nodes at the outset (i.e. when choosing an initial 
move).  For chess, the estimates range well over 10^100.  
 
(A game would hardly be fun if one could easily discover a path from 
the start state to a guaranteed win!)

D.To address these two issues, we introduce two new ideas:

1. A search technique known as min-maxing, which accounts for the 
back and forth nature of play between opponents.  We will discuss 
this in a moment.

2. A heuristic technique known as static evaluation functions.

E. We will also consider various approaches to pruning the search tree in 
the face of combinatorial explosion.  The ability to do this well is one 
of the key things that distinguishes great game programs in games like 
chess from just good ones.
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II. Min-Max Search

A.For games, we use a search procedure called mini-maxing, which can 
be viewed as a variant of an and/or tree.

1. Levels of the tree alternate as to whose turn it is to move.  At level 
1, 3, 5 etc. it is our turn; at levels 2, 4, 6 etc. it is our opponent's 
turn.

2. When it is our turn to move, we can choose any move that leads to 
our goal; thus we are happy with the node if any move leads to 
victory and the nodes corresponding to our moves are OR nodes - 
i.e. we control which branch to take, so a node is good if branch 1 
is good or branch 2 is good or ...  An or node is good for me if ANY 
of its branches is good for me.

3. When it is our opponent's turn to move, we have to be able to cope 
with anything he might do - that is, we want to put him/her into a 
situation where any choice still leaves it possible for us to achieve 
our goal.  Thus, these are AND nodes - i.e. the node is good only if 
branch 1 is good and branch 2 is good ...  An and node is good for 
me iff ALL of its branches are good for me.  
 

PROJECT TIC-TAC TOE EXAMPLE AGAIN: the top node is an 
or node; the next level are and nodes, etc.  The arcs on the and 
nodes indicate that we must find an option further down the tree 
that works no matter which of the possibilities our opponent might 
choose at this level. 

B. The basic idea is to work backward from the leaves of the tree, toward 
the root, assigning a value to each node.

1. Nodes representing a final state in the game are assigned values as 
follows: 
 
∞ = win for us  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- ∞ = loss for us (win for opponent) 
0 = draw  
 
(SECOND AND THIRD SLIDES - note that in tic-tac-toe at the 
8th ply there is only one move possible, so we can back up values 
immediately)

2. Once all the children of a non-terminal node are labelled, it can be 
labelled as follows:

a) If it is an or node, we MAXIMIZE - i.e. we choose the 
maximum value from among any of the children.  
 

Rationale: We are in control, so we can choose the best path.  
 

FOURTH SLIDE 

b) If it is an and node, we MINIMIZE - i.e. we choose the 
minimum value from among the children.  
 

Rationale: Our opponent is in control, and will presumably 
choose he path which is best for him and hence worst for us.  
 

FIFTH SLIDE

3. Ultimately, when we get to the top level, we will choose from 
among  the moves available to us the one having the highest value.  
 

SIXTH SLIDE  

C. Although we think of min-maxing as being done bottom up, a 
computational algorithm typically does it top-down, using a recursive, 
depth first like function.   We will look at this shortly.
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III.Static Evaluation Functions

A.In our initial discussion of min-maxing, we have assumed that it would 
be possible to generate the game tree all the way down to the terminal 
nodes. In general, of course, this is not the case.  (In fact, a game for 
which we can develop the entire game tree is not likely to hold our 
interest for long!)

B. Thus, at some level in the search, we have to assign values to nodes 
that are not terminal nodes for the game as a whole.  We can do this 
using a static evaluation function.

1. A static evaluation function is a function that looks at a given board 
position and assigns it a score - without doing further search.

2. If the board configuration does happen to represent a terminal  
state, then the static evaluation function can assign an appropriate 
value for win, lose, or draw.

3. Otherwise, the function returns a value based on an estimate of how 
likely it is that configuration will ultimately lead to a win for us or 
our opponent.  A position that is “good” for us will be given a value 
close to the “win” value, while one that is good for opponent will 
be given a value that is close to the “lose” value.

C. The development of such a function is a difficult task, and requires a 
good grasp of what is important in the game.  What we want is a 
function that gives a large positive score if the situation is good for us, 
and a negative score if the situation is good for our opponent.  
 

Example: For checkers, one possibility (though not the best) is the 
difference between the number of my checkers remaining and the 
number of my opponent's - perhaps counting kings as 2.  
 

Example: Beginning chess players often make use of a heuristic that 
values pieces as Queen 9, Rook 5, Bishop 3, Knight 3, Pawn 1 and 
then compares total scores for each player
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1. When a static evaluation function is used, generally the overall strength 
of the program as a player depends on the quality of this function.

2. One interesting class of applications of machine learning is actually 
learning a static evaluation function based on playing games.  (We will 
talk about several examples of this later in the course.)

D.We combine the static evaluation function with a limit on the depth of 
a search.  When we get to the prescribed depth limit, we evaluate the 
board using the static evaluation function.

1. A simple variant of game tree search uses a fixed maximum depth 
at all times.  

2. More sophisticated variants may allow some "interesting" branches  
of the tree to be searched more deeply than others by using some 
game-specific heuristic.

E. This leads, then, to the following general approach:

1. To decide what move to make at any given time, explore all the 
alternatives from the current configuration and choose the one with 
the highest score.

2. To explore a node

a) If it is beyond the maximum depth, evaluate it using the static 
evaluation function.

b) Otherwise, if it is a maximizer, explore each of its children and 
then choose the greatest value

c) Otherwise (it must be a minimizer), explore each of its children 
and then choose the smallest value
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IV.Pruning the Tree

A.One problem with game tree search is that combinatorial explosion 
quickly sets in, limiting the depth of the search.  

B. This effect can be postponed, but not eliminated, by a technique called 
alpha-beta pruning.  At best, alpha-beta pruning can cut the exponent 
in the exponential growth in half; but in the worst case it may yield no 
improvement at all.  The key idea is that at certain points in a min-max 
search, we can  conclude that pursuing certain branches of the tree will 
yield no information of any value to us.

1. Example: Consider the following partially-completed min-max 
search  
 

�  
 
Evaluating the remaining two children of the middle minimizer 
cannot   possibly affect the outcome of the overall search.  Since 
we know that the minimizer has one child of value 1, we can be 
sure that it will not return a value greater than 1 (though it could 
return something less). However, since the left subtree has value 3, 
the maximizer at the top will always prefer this 3 to a value of 1 or 
less, so knowing the exact value of the middle minimizer subtree is 
irrelevant.

2. Example: Consider the following (where irrelevant subtrees are 
omitted  
 

4   3  7    1   ?   ?    ?   ?   ?     

Circle = maximizer
Square = minimizer
Number at leaves = static value

3 ? ?

?
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 �  
At this point, the remaining branches of the minimizer can again be 
cut off.  Why?   
 
ASK CLASS 

a) The bottom minimizer is guaranteed to return a value of -7 or 
less.  

b) There are now two possibilities.  Either its parent maximizer 
will find a better value down some other branch, or it won’t

(1)If it will, then the choice made by the bottom minimizer will 
be ignored, in which case refining it further will not gain us 
anything.  

-5

... ...

... ...

... ...-7
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(2)If it won’t then it will have to choose the value returned by 
the minimizer, which will be -7 or less.  But that, in turn, 
means that its parent minimizer is guaranteed to be able to 
choose -7 or less, in which case the maximizer at the top of 
the tree will ignore this value in favor of the -5 it has already 
found.   
 
Either way, the choice made by the minimizer at the bottom 
is guaranteed to be ignored, and so is irrelevant.  Hence 
further exploration of the minimizer is not worthwhile.  
 
This is known as DEEP CUTOFF.

C. We can implement this sort of pruning algorithmically as follows: 

1. When we are exploring a node, we make use of two additional 
parameters conventionally called alpha and beta.  Alpha represents 
the smallest value we are interested in (because we already know 
we can do at least as well down some other path.)  Beta represents 
the largest value we are interested in (because we know our 
opponent will take a different path if we can do better than this.)

2. At the root of the game tree, alpha is set to -∞ and beta to +∞.  

3. At a minimizer node, as soon as we find some subtree that has a 
value less than or equal to alpha, we can stop exploring that node, 
and simply report this value.

4. At a maximizer node, as soon as we find some subtree that has a 
value greater or equal to than beta, we can stop exploring that node 
and simply report this value.  
 
Ex: Consider the following partial search tree (where only the final 
result of searching the first two branches is shown, and alpha and 
beta values come from higher up the tree.)  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If node A reports a value greater than or equal to 6, then B can also 
report this value immediately, and need not consider its other 
alternatives.  (As a maximizer, it cannot be forced to report a value 
less than what any of its children returned, and the value of beta 
tells us that we are not interested in anything greater than 6.)  
 
If all the children of the B report a value less than or equal to 4, 
causing B to report some value less than or equal to 4, then C can 
also report this value immediately, and need not consider 
alternatives.  (As a minimizer, C cannot be forced to report a value 
greater than what B reports, and the value of alpha tells us that we 
are not interested in anything less than 4.  
If the node we are working on reports a value of 4 or less, then its 
parent minimizer can report it and stop searching its siblings.  (If he 
parent minimizer reports a value less than 4, the top level 
maximizer will prefer the 4 it has already found.) This leads, then, 
to the following general approach:  
 

To decide what move to make at any given time, explore all the 
alternatives from the current configuration and choose the one with 
the highest score.

Circle = maximizer
Square = minimizer

4 3

 called with
α = 2, β = 6

 called with
α = 4, β = 6 ...

...

 called with
α = 4, β = 6 We will call

this node C

We will call
this node B

We will call
this node A
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5. Summary: The alpha-beta algorithm  
 
PROJECT

6. EXAMPLE: SLIDE SHOW showing development of Alpha/Beta 
values (Based on Winston figure 4-18, Page 119)

D.There are a number of other heuristics that can be applied to help 
decide  how much of the search tree to actually consider, given search 
time  constraints - e.g. 

1. Quiescense 
 
It is better to stop the search in a portion of the tree where 
computed values are changing rather slowly, rather than in the 
middle of rapid change. (I.e. if in a region of rapid change, push 
search deeper in this portion of the tree.)

2. The Killer Heuristic  
 
Consider first the move that has the highest likelihood of being 
ultimately chosen (perhaps using a special heuristic to decide 
which one this is.)   When using alpha-beta pruning, this is the one 
most likely to lie outside the range defined by alpha and beta, in 
which case the rest of the subtree can be cut off.

E. There is also a danger with minimaxing called the  Horizon Effect  
 
The danger that a serious problem can lie just beyond the point where 
we stopped searching and did a static evaluation.

F. Exercise to do in class  
 
HANDOUT  with game tree to label using minimax + alpha-beta
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V. What Has AI Work on Games Accomplished?

A.In the case of some games, computer programs have been produced 
that can consistently do well against human players.

1. In some cases, this is because the game has been solved - i.e. the 
game tree has been totally explored for all possibilities.

a) A simple example: tic-tac-toe.  (Actually, even a good human 
player can play in such a way as to at least draw, regardless of 
who starts the game.)

b) Go-Moku.  In this case, the player who goes first can always win.

c) Checkers.  The following description of a checkers-playing 
program was published in Science in July, 2007: 
 
The game of checkers has roughly 500 billion billion 
possible positions (5 x 1020). The task of solving the 
game, determining the final result in a game with no 
mistakes made by either player, is daunting. Since 1989, 
almost continuously, dozens of computers have been 
working on solving checkers, applying state-of-the-art 
artificial intelligence techniques to the proving process. 
This paper announces that checkers is now solved: 
perfect play by both sides leads to a draw. This is the 
most challenging popular game to be solved to date, 
roughly one million times more complex than Connect 
Four. Artificial intelligence technology has been used to 
generate strong heuristic-based game-playing 
programs, such as DEEP BLUE for chess. Solving a game 
takes this to the next level, by replacing the heuristics 
with perfection.  

2. In other cases, there are computer programs which can consistently 
play well against humans, though not perfectly.  Perhaps the best 
known example is Chess.
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a) In 1997, Deep Blue, a chess-playing program developed by 
IBM (and using special hardware) defeated the then world-
champion of chess, Gary Kasparov, by a score of 3.5 to 2.5.  
(Deep Blue won 2 games, Kasparov won 1, and 3 were draws).

b) Since then, various other chess-playing programs have done 
extremely well against humans.   (If you want to be humiliated, 
try playing even something like Gnu-chess, a free chess-playing 
program!)

B. There are, however, other games - such as bridge - where computer 
programs cannot yet beat good human players.
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